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Abstract 

In 1991, the Japanese Hiten  mission  used a low energy  transfer with a 
ballistic  capture  at  the  Moon  which  required less AV than  a  standard 
Hohmann  transfer  to  the  Moon. In this paper, we  apply  the same dynamical 
systems techniques  used  to  produce  the  “Petit  Grand  Tour” of Jovian  moons 
to reproduce  a  Hiten-like  mission.  We  decouple the  Sun-Earth-Moon- 
Spacecraft  4-body  problem  into  two  3-body  problems. Using the  invariant 
manifold  theory of the  Lagrange points of the  3-body systems, we are able to 
construct low energy  transfer  trajectories  from  the  Earth  and  ballistic  capture 
trajectories  at  the  Moon.  The  techniques  used in the  design  and  construction 
of this trajectory  may  be  applied in many situations. 

1 .  Introduction 

In this paper, we  apply the same dynamical systems  techniques  used to produce  the  “Petit 
Grand  Tour” of Jovian  moons to reproduce  a  Hiten-like  mission  (Ref. 1). In 1991,  the Japanese 
Hiten  mission  used a low energy  transfer with a ballistic  capture  at the Moon based on the work 
of Belbruno  and  Miller (Ref. 2) on the Weak  Stability  Boundary  theory (WSB). Discussions  at  the 
“Advances in Nonlinear  Astrodynamics  Conference” in 1993 (Ref. 3) produced  the  generally- 
accpeted view  that the WSB is generated by the  invariant  manifold  structure of the  Lagrange 
points of the  Sun-Earth  and  Earth-Moon systems. Belbruno documents his conjectures on the 
structure of the WSB in Ref. 4. 

The  three key ideas of our  approach to “Shoot  the  Moon” are: 

1 .) Treat  the Sun-Earth-Moon-Spacecraft 4-body  problem as two  coupled  circular  restricted 
3-body  problems,  Sun-Earth  and  Earth-Moon systems; 

2.) Use  the  unstable  manifolds of periodic  orbits  about the  Sun-Earth  Lagrange  points to 
provide a low energy  transfer from  Earth to the  stable manifolds of periodic  orbits  around 
the Earth-Moon  Lagrange  points; 

3.) Use  the stable manifolds of the  periodic  orbits  around  the  Earth-Moon  Lagrange  points to 
provide a ballistic  capture  about  the  Moon. 

We start with the  planar  circular  restricted  3-body  problem (PCR3BP) to compute  the  invariant 
manifolds.  The  final  trajectory  starting  from  the  Earth  and  ending in lunar  capture is integrated in 
the  Bi-Circular  Problem (BiCP) where  both the Moon  and the Earth are assumed to  move in 
circular  orbits in the Ecliptic,  and  the  spacecraft is an  infinitesimal mass point. 

The  final  Bi-Circular  solution  has  been  differentially  corrected to a fully integrated  trajectory with 
JPL  ephemeris using JPL’s LTool  (Libration  Point  Mission  Design Tool). LTool is JPL’s new 
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mission  design tool currently  under  development,  based  on  dynamical systems  theory. This will 
be  described in a  subsequent  paper. 

2. The  Three  Body  Problem 

We start with the PCR3BP as our first model of the  mission  design space, the  equations of 
motion  for  which in rotating  frame with normalized  coordinates  are: 

The  subscripts of R denote  partial  differentiation in the  variable  and apostrophes  after  the 
variables are time  derivatives.  The  variables rl, r2, are the  distances from (x,y) to the S u n  and 
Planet  respectively. See Szebehely’s  classic text  (Ref 5.) for  an  excellent  derivation  and 
description. 

The  coordinates of the  equations  use  standard PCR3BP  conventions:  the sum of the  mass of the 
S u n  and  the  Planet is normalized to 1 with the  mass of the  Planet  set to p; the  distance  between 
the  Sun  and  the  Planet is normalized to 1; and  the  angular  velocity of the  Planet  around  the S u n  
is normalized to 1. Hence in this model,  the  Planet is moving  around the S u n  in a circular  orbit 
with period 2n. The  rotating  coordinates,  following  standard  astrodynamic  conventions, are 
defined as follows:  the  origin is set at  the  Sun-Planet  barycenter;  the  x-axis is defined by the S u n -  
Planet  line with the  Planet on the positive  x-axis;  the  xy-plane is the  plane of the orbit of the 
Planet  around  the S u n  (see Figure 1). 

Figure 1.  The  3 Body  Problem in Rotating  Coordinates. 

Although the PCR3BP has 3 collinear  libration  points  which are unstable, for the cases of interest 
in this paper, we examine  only L1 and L2. These  equations are autonomous  and  can  be put into 
Hamiltonian  form with 2 degrees of freedom. It has  an  energy  integral  called  the  Jacobi  constant 
which  provides 3 dimensional  energy  level surfaces: 

c = -( X ? *  + y’2) + 2G(x,y) . ( 2 )  

The  power  of  dynamical systems theory is that it is able to provide  additional  structures within the 
energy  surface to characterize  the  different  regimes of motions. 

2.1 Orbit Classes  Near L, and L2 

The  work of  Lo and Ross (Ref. 6 )  demonstrated  that  the  dynamics of the L, and L2 region is 
extremely  important  for  the  understanding of many disparate  dynamical  phenomena in the  Solar 
System  and  also  for space mission design. In order to better  understand  the  dynamics  of this 
region,  we  now  review the work  of  Conley (Ref. 7) and  McGehee  (Ref. 8) which  provides  an 
essential  characterization of the  orbital  structure  near L, and L2. McGehee also proved  the 
existence of homoclinic orbits in the Interior  Region.  Llibre,  Martinez,  and  Simo  (Ref. 9) computed 
homoclinic  orbits of L, in the  Interior  Region.  They  further  extended  McGehee’s  results  and 
proved a  theorem using symbolic  dynamics  for  orbital  motions in the Interior  Region.  One of the 
key results in Koon et  al.  (Ref. 1) is the  completion of this picture with the  computation of 
heteroclinic  cycles in the  Planet  Region  between L1 and La. We will refer to the various  regions by 
the following  short  hand: S for the Interior  Region  which  contains the Primary Mass,  J for the 
Region  which contains  the  Secondary  Mass, X for  the  Exterior  Region outside  the  Secondary 
Mass’  orbit.  For  the  Sun-Earth system, S represents  the S u n  and J  represents  the Earth.  For  the 
Earth-Moon system, S represents  the Earth  and J  represents  the Moon. 
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Figure 2 below  schematically  summarizes  the  key  results of Conley  and  McGehee.  The Hill 
Region is the  projection of the  energy  surface from the  phase space onto the configuration space, 
the  xy-plane.  Figure  2a shows the Hill Region  for  an  energy  value just about  that of L2, 
represented by the white space. The  grey  region is energetically  forbidden. In other  words, with 
the given energy,  our  spacecraft  can  only  explore  the  white  region.  More  energy is required to 
enter  the grey  Forbidden  Region. 

Figure 2a.  The Hills Region  Connecting  the  Interior  Region (S), the  Planet  Region (J), and the 
Exterior  Region (X). 

2b.  Expanded  View of the L2 Region with 4 Major Classes of Orbits. 

Figure 2b is a blows-up of the L2 Region to indicate  the  existence of four  different classes of 
orbits.  The first class is a single  periodic orbit with the  given  energy,  the  planar  Lyapunov  orbit 
around L2. The  second class represented by a Green  spiral is an  asymptotic  orbit winding onto 
the  periodic  orbit. This is an orbit on the  stable manifold of the Lyapunov  orbit.  Similarly,  although 
not shown, are orbits  which wind off the  Lyapunov  orbit to form its unstable  manifold.  The third 
class, represented by red  orbits, are transit  orbits  which pass through the J Region  between  the S 
and X Regions.  Lastly,  the  fourth class, in blue,  consists of orbits  which are trapped in the S or X 
Regions.  Note  that  orbits  trapped in the region  may  be  only  temporarily  captured  although the 
duration  may  be  very  long. 

2.2 Invariant  Manifolds of Unstable  Periodic  Orbits 

Let us examine the stable and  unstable  manifold of a Lyapunov orbit as shown in Figure 3 below. 
Of course, only a very  small  portion of the  manifolds are plotted.  Note  the  X-pattern  typical of a 
saddle energy  surface formed by the  manifolds. 

Figure  3.  The Stable and  Unstable  Manifold of a Lyapunov Orbit. 

Since  the  energy  surface is 3-dimensional, this means  that  the  2-dimensional tubes of the 
manifolds of the  Lyapunov  orbits are separatrices! By this we  mean the  tubes separate different 
regimes of motion within the  energy  surface.  Referring  back to the  schematic  diagram,  Figure 2b, 
we  notice  that the Red  Transit Orbits pass through  the  oval of the  Lyapunov  orbit. This is no 
accident, but an  essential  feature of the  dynamics  on  the  energy surface. Lo and Ross (Ref. 6) 
referred to L1 and L2 as gate keepers on the  trajectories,  since  the  Jupiter  comets must transit 
between  the X and S regions through the J region  and  always seem to pass by L1 and L2. Chodas 
and  Yeomans  (Ref. 10) noticed  that  the  comet  Shoemaker-Levy9 passed by L2 before it crashed 
into Jupiter. These tubes are the  only  means of transit  between  the  different  regions in the  energy 
surface! In fact, all this was  already known to Conley  and  McGehee some 3 decades ago. 

The series of papers we referenced,  starting with Conley’s work, is a beautiful case study of the 
migration of abstract  theory to concrete  engineering  applications. In fact,  some of the work  of 
Conley’s  group  was  funded by NASA in the 1960’s during the Moon Race. It has  taken some 30 
odd years for  that  migration to occur. This was  one of NASA and NSF’s long-term  investments 
that is now  realizing its payoff  inreal space mission applications. 

2.3 Coupled  Three  Body  Systems 

The study of Hiten-like  transfers  requires  four  bodies:  the S u n ,  Earth,  Moon,  and spacecraft. 
However,  the  structure of the  phase space of the  4-body  problem is poorly  understood in 
comparison with the  3-body  problem. By decomposing  the 4-body problem  into  two  3-body 
problems,  all of the  machinery of 3-body  invariant  manifold  theory becomes  available. This is 
similar to the more standard  approach in astronomy  where  the  Solar  System is viewed as a 
series of 2-body  problems  where  Keplerian  theory  applies.  JPL’s spectacular multiple flyby 
missions  such as Voyager  and  Galileo are  based on this Keplerian  decomposition of the  Solar 
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System. But, when  we  want to use halo  orbits  and  their  invariant  manifolds, a  3-body 
decomposition of the  Solar  System is natural. This, in effect, is what  was  done  to  design  the  “Petit 
Grand  Tour” in Koon  et  al.  (Ref. 1 and 11). 

However, the success of this approach  depends  greatly on the  particular 4 bodies. In order  for 
low energy  transfers to take  place,  the  invariant  manifold  structures of the two 3-body systems 
must intersect within a  reasonable  period.  Otherwise,  the  transfer  may  require  an  impractically 
long waiting  period.  For the Sun-Earth-Moon-Spacecraft case, this is not a problem.  The  invariant 
manifold structures of the  Earth-Moon L2 grow  very  quickly  (on the  order of 1 month) into the 
circular  region  around  the  Earth with a radius  around 1,000,000 km. Similarly,  the  invariant 
manifold structures of the  Sun-Earth L, and L2 also  extend  quickly  (on  the  order of 1 month)  into 
the same circular  region (1,000,000 km radius)  around  the  Earth.  The  overlapping of these 
invariant  manifold structures provide the low energy  transfers  between  the  Earth  and  the  Moon. 
This explains why many of the  techniques  based on the WSB theory  always  aim  for 
approximately 1,000,000 km away  from  the  Earth as a  starting point for the  construction of the 
trajectory. 

The  invariant  manifold  structures of the  Lagrange  points are truly a network of dynamic super 
highways within the  Solar  System. I f  the  invariant  manifolds of the  coupled  3-body systems 
intersect,  then  a  low-energy  transfer is possible. I f  their  manifolds  do  not intersect,  then  a low- 
energy  transfer is difficult  to achieve.  Notice,  non-intersection does not imply impossibility of 
transfer. This is because transport  via  intersecting  invariant  manifolds is merely one of several 
transport  mechanisms within the  Solar  System. For example,  the  manifolds of the  Sun-Earth  and 
Sun-Mars systems do  not  intersect  even  after  more  than 1,000,000 years of integration.  Yet, 
transport  between  Mars  and  Earth are known to occur  on a  shorter  time scale. This transport is 
due to secular resonances, another powerful  and  complex  transport  mechanism within the  Solar 
System. 

3. Earth-Moon  Transfer  Mechanism 

3.1 Compute  the 200 km Altitude  Launch  Point 

To  effect  the  Earth-Moon  transfer, we must compute a  Sun-Earth  manifold  which leaves  the 
vicinity of the  Earth  toward  the  region of the  Earth-Moon  manifolds.  To generate  the manifolds, 
we must first produce  Lyapunov  orbits  around  the  Lagrange  points.  For  the  Sun-Earth  manifold, 
we select an L2 Lyapunov  orbit. An L, Lyapunov  orbit is equally  valid  for this application.  Figure 
4a  shows  the  Lyapunov  orbit  and a portion of its unstable  manifold (red). The  trajectories  on the 
manifold  were  integrated until they hit the line  labeled OSE. This is where  we chose to  compute  the 
Poincare  section in the  variables { r, dr/dt } as shown in Figure 4b, where ? = x* + 4. The 
Poincare  section is the  intersection of the  trajectory with a  hyperplane  which is transversal  (not 
parallel)  to the  trajectory in the  energy  surface.  Since  the  planar problem has two degrees of 
freedom, its energy  surfaces are 3-dimensional.  Hence,  the  hyperplane in the  energy  surface is 
just a  2-dimensional  plane. In this instance, we chose  the { r, dr/dt } - plane because we  want a 
manifold  which approaches Earth as closely as possible  since we  want  to use  the  manifolds  of 
this Lyapunov  orbit to leave  the  Earth. As the  unstable  manifold of the L2 Lyapunov  orbit is a  tube, 
its Poincare  section must be a distorted  ellipse. 

Figure  4.  Sun-Earth  Unstable  Manifold  and  Poincare  Section. 

From  Conely  and  McGehee’s  characterization of the  orbital classes in the  Earth-region  between 
L, and L2, summarized in Section  2.1, we  know  that  any point within the  ellipse of the  Poincare 
section with the same Jacobi  constant as the manifold must come from the  Exterior  Region 
outside of the  Earth’s  orbit.  Since  we are trying to find an  orbit  that  leaves  the  Earth  and goes to 
the  Moon,  clearly, it cannot  come from this region within the  ellipse.  However, by the same 
argument,  points  outside  the  red  ellipse with the same Jacobi  constant must come  from the  inside 
of the  Earth  Region.  From  experience,  we  know also  that points near  the  manifold  tend to stay 
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close to the manifold for a considerable  amount of time.  The  closer a point is to the  manifold,  the 
longer it tends to  linger  near  the  manifold.  Let us examine  the  behavior of points  near the 
manifold by taking a small segment [ql, q2] as indicated in Figure 5. Note  that  Figure 5 is the 
Poincare  section of both the  stable  (green) and  unstable (red) manifolds of the Lyapunov  orbit. In 
this instance,  the  section  was  taken  at x = 1 - p, using the { y, dy/dt } - plane.  The  point ql lies  on 
the  unstable  manifold. All of the  points in the  segment  have  the same x-variable.  We  also  require 
that  they  have  the same energy which  completely  determines  their phase space coordinates.  The 
blue  line  schematically  indicates  the  location of the  Earth’s  postion in y, taking  into  consideration 
the  Earth’s  finite  size. But the dy/dt portion of the  blue  line  has  no  meaning. 

Figure 5. Using the  Poincare  Section to Find the  Transfer  Trajectory. 

From the  general  theory  described in Koon et  al  (Ref. l),  it is known  that the points in the [q l ,  q2] 
- segment will wind around  the  eqilibrium  point, L2, for  different  number of revolutions  when 
integrated  backwards.  Theoretically,  the  point q1 should wind around L2 infinitely  many  times 
because it is on the  unstable manifold  which  when  integrated  backwards winds onto  the 
Lyapunov  orbit.  Whereas  the  point q2, if it is sufficiently  close to the  unstable  manifold, will wind 
around L2 for a few  revolutions.  Then it will leave  the L2 vicinity  guided by the  stable manifold 
(integrating  backwards)  back  near  the  Earth, since q2 lies  outside of the  red  ellipse. 

Let us integrate  the  segment  backwards  and  plot its pre-image on  he  Poincare section. Let P 
denote  the  Poincare  map,  and P‘ its inverse. P’[ql, q2] is plotted in black  and winds around  the 
Poincare  section of the  styble  manifold as predicted.  Note P’(ql) is almost right on the  stable 
manifold.  Theoretically, P (ql) should  be  exactly  on the Lyapunov  orbit.  However, since all  our 
computations  are  numerical  approximations with finite  precision,  we  should think of ql only as a 
point  very close to  the  unstable  manifold.  Note in particular,  that by the  slightest  change in the 
dy/dt parameter  (or a small AV), we can  move P’(q) anywhere  near  Poincare  section of the 
stable manifold in Figure 5. In this way,  we  can  pick it to be  exactly 200 km away  from the  Earth 
since {x, y, dy/dt} are determined by this process and  dx/dt is determined  from  the  Jacobi 
constant. 

What will it do? In the  time-reversed  system, it must follow the  “unstable  manifold” of the  time- 
reversed  system to leave  the  Lyapunov  orbit. But, that is just the  stable manifold of the time- 
forward system.  Since we  picked the manifold  very close to Earth as can  be seen in Figure 4.a, 
one of the  points in the [ql, q2]-segment must approach  Earth  along  the stable manifold  when 
integrated  backwards. Let us integrate  the  segment  backwards  and plot the  Poincare  section  and 
see just where these oints  come  from with respect to the  stable manifold.  Let P denote  the 
Poincare  map,  and P its inverse. P’[ql, q2] is plotted in black  and winds around  the  Poincare 
section of the  stqble manifold as predicted.  Note P“(ql) is almost right on the  stable manifold. 
Theoretically, P (ql) should  be  exactly  on  the  Lyapunov  orbit.  However, since all  our 
computations are numerical  approximations with finite  precision,  we  should think of ql only as a 
point  very close to the  unstable  manifold.  Note in particular,  that by the  slightest  change in the 
dy/dt parameter  (or a small AV), we can  move P’(q) anywhere on the  stable manifold’s  Poincare 
section in Figure 5. In this way,  we  can  pick it to be  exactly 200 km away  from  the  Earth since {x, 
y, dy/dt} are determined by this process and dx/dt is determined  from  the  Jacobi constant. 

P 

3.2 Compute  the Earth-Moon Transfer  Point 

Next  we must compute  obtain a trajectory  to  approach  the  Moon.  Since the  unstable manifold  of 
the  Sun-Earth Lyapunov  orbit will move  the  spacecraft  away from Earth  into the  Sun-Earth L1 and 
L2 region  which is outside of the Moon’s  orbit, this suggests we  need  to use  the  Earth-Moon L2 
invariant  manifold  complex to effect  the  transfer to the Moon  and  eventual capture. In Figure 6 ,  
we  show the  stable manifold (green) of an  Earth-Moon  Lyapunov  orbit  and its Poincare  section. 
Again  from the  Conley’s  classification  theory,  we  know  that  any  point within the  green  ellipse of 
the  Poincare  section of the  stable manifold  which has  the same Jacobi  constant as the manifold 
itself, must, by theory,  be  transported  into  the  lunar  region  between  the  Earth-Moon’s L1 and L2. 
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Figure 6. The  Stable Manifold of the  Earth-Moon L2 Lyapunov Orbit and Its Poincare  Section. 

In Figure 7, we  plot the  Sun-Earth (red) and  Earth-moon (green)  Poincare  sections. I f  we  pick 
points  outside of but close to the red  ellipse,  we  can find a trajectory  which departs at 200 km 
altitude  from  the  Earth using the  algorithm of Section 2.1. I f  we  now also  require this point to fall 
within the  green  ellipse, it is guaranteed to approach  the Moon by the  above  argument. 

Figure 7. The  Poincare  Sections of the  Sun-Earth  and  Earth-Moon  Manifolds. 

There are several  subtle  and  complex  issues  here. First of all, these Poincare  sections  were 
computed in “different  rotating  coordinate systems”! I f  one  were to plot t h e  Earth-Moon  manifold 
in the  Sun-Earth  rotating  frame, it would  unravel  into a mess. The use of the  Poincare  section 
avoided this mess, but, it introduced a  phase. However,  since  each  point  on the Earth-Moon 
Poincare  section  requires  different  amounts of time to approach  the  Lyapunov  orbit,  there  already 
is a nonlinear  phasing issue in the Earth-Moon  rotating frame. 

A second  issue is that  fact  that these manifolds are based on 3-body models. But, the  trajectory 
we desire is based on  4-body  models.  Hence  the  initial  conditions  computed using this method 
may  fail as the  4-body  perturbations will “move”  the  ellipses of the  Poincare  sections slightly. 
However, using points  nearby,  a  suitable  solution  can  be  found. A better  approach is to 
recompute  the  Lyapunov  orbits  and  their  manifolds in the  4-body  model  desired.  Then  compute 
the Poincare  sections to produce  the  orbit. 

Third, since  the  energies of the  Sun-Earth  and  Earth-Moon  manifolds  differ,  the  intersections 
produced in this manner  require a small AV. By selecting  the  energies  properly so that  they  match 
in both systems, this small AV may  be  eliminated. In other  words,  a  completely  free  transfer  after 
launch  from  Earth  to  lunar capture is possible! 

The  fact  that these AV’s  are small  and  may  even  be  eliminated  can  be seen from this well-known 
fact.  From a 200 km circular  orbit  around  the  Earth, it requires  approximately 3150 m/s of AV to 
reach  the  Earth-Moon L1 or Le. For another 50 m/s, you  can  reach the  Sun-Earth L1 or Lp! In other 
words,  the  Lyapunov  orbits,  halo  orbits,  and  their  invariant  manifolds  all  have  about  the same 
energy on  top of being  colocated  at roughly 1,000,000 km from the  Earth! This happy set of 
coincidences is what enables these low energy  lunar  transfer  and  capture  orbits.  Given  another 
4-body  system with different parameters,  such  transfers may  not  be  available. Of course, when 
there are too many coincidences,  often  another  phenomenon is at  play,  waiting  to  be  discovered. 

4. The Capture Mechanism 

Let us now address the  capture  mechanism. Koon  et  al  (Ref. 1,  11) provided  the  dynamical 
explanation  and  numerical  algorithm  for  how these low energy  captures  occur.  Once  the 
spacecraft  enters  the  green  tube of the  exterior  stable  manifold of the  Earth-Moon L2 Lyapunov 
orbit, it must go  into the  lunar  region  between  the  Earth-Moon L, and Lp. In order  for this orbit  to 
then  leave the lunar  region, it must leave  via  the  interior  stable  manifolds of the L1 Lyapunov  orbit 
of the  exact same Jacobi  constant! Recall  from  Conley’s  classification,  for each  energy,  there is 
exactly one Lyapunov  orbit  at L1 and L2 with the same energy.  Hence  all  orbits  which enter and 
leave  the  lunar  region  via a Lyapunov  orbit at L2 must depart  via a Lyapunov  orbit with the same 
energy  at L,. For this to occur,  the  Poincare  sections of their  stable  and  unstable  manifolds must 
intersect. And such  orbits must lie in the  intersection.  Note, these manifolds  belong  entirely to the 
Earth-Moon  system  and  have  nothing to do with the  Sun-Earth  system. But, in general, these 
intersections, if they  exist,  tend to be  small,  although  not of measure  zero. Arbitrarily picking 
points in the  green  ellipse will most likely  result in a lunar  capture  orbit. A capture orbit is easily 
computed by trial  and  error. But, to be certain,  one could use  the  algorithm  developed in Koon  et 
al  (Ref. 1)  and guarantee  capture. Theoretically, a  capture of any  duration  may  be  effected in this 
manner. In practice,  a  maneuver  may  be  required  for  long-term  capture. 
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5. End-to-End  Trajectory  Construction 

To generate  the  end-to-end  trajectory in the Bi-Circular  model, select  a  point, Q, as in Figure 6.  
Integrate  the  Bi-Circular  equations of motion  backwards using Q as initial  condition  to  obtain the 
launch  trajectory.  Integrate Q+AV forwards  to  obtain  the  lunar  capture  trajectory.  Recall the AV is 
determined  from  the  Jacobi constants of the  two systems. This approach is completely  analogous 
to the  patch-conic  technique. An initial  trajectory is designed by patching  conic arcs  together. A 
differential  corrector is used  to  move the  conic  arcs in phase space into an  integrated  trajectory 
from end-to-end using whatever  ephemeris  model is desired. In our case, instead of conic arcs, 
we are using arcs  obtained from the  invariant  manifolds. 

Figure 8.a is the final end-to-end  trajectory  integrated in the  Bi-Circular  model in inertial 
coordinates. A AV of 34 m/s is required  at  the  location  marked.  Figure 8.b shows  the same 
trajectory in Sun-Earth  rotating  frame.  Note  the  characteristic  loop  at  the  lower right hand  corner 
typical of insertions  into  halo  or  Lyapunov  orbits.  Clearly,  the  trajectory is following  the stable 
manifold of the  Lyapunov  orbit, but doesn’t  have  enough  energy  to  capture  onto  the  Lyapunov 
orbit  and  falls  back  to  the  Earth. But, as it falls  back, it reaches  the  stable manifold of the  Earth- 
Moon  Lyapunov  orbit. A small AV pushes it into a lunar  capture  orbit.  Finally,  Figure 8.c at the 
lower right hand  corner  shows  the  ballistic  capture  at  the  Moon in the  Earth-Moon  rotating  frame. 

Using the  trajectory from the Bi-Circular  model  shown in Figure 8,  an  end-to-end  trajectory  has 
been  computed in the  JPL  ephemeris  model using JPL’s LTool  (Libration  Point  Mission  Design 
Tool)  currently  under  development. This computation is the  subject of a future  paper. 

6. Conclusions 

In this paper, we have  laid bare  the  dynamical  mechanism  for  Hiten-like  lunar  transfers  and 
capture  orbits.  The  role of dynamical systems  theory,  specifically  the  invariant  manifold  theory of 
periodic  orbits  about  the  Lagrange  points, is crucial in the  solution of this problem. In many of the 
previous  applications of dynamical systems theory to mission  design, the  focus  has  been on 
using the  trajectory arcs on the  computed stable and  unstable  manifolds as initial guesses for the 
desired  end-to-end  trajectory. In the “Shoot the Moon” concept, we  show  that the  tubular  regions 
enclosed by the  manifolds,  the  regions  exterior to the  manifolds, as well as the manifolds 
themselves all  may  be  used  to advantage  depending on the  desired  characteristics of the final 
trajectory.  The  periodic  orbits  about  the  Lagrange  points as well as their  invariant  manifolds 
provide  an  invaluable  map of the  different  dynamical  regimes in the  phase space. Mission 
designers with this knowledge  can  pick  and choose to  their  hearts’  content,  an  infinite  variety of 
trajectories to suit almost  any  purpose  at  hand.  These  objects, in a very  real sense for missions in 
the  delicate  chaotic  regions  controlled by the  Lagrange  points, are the  replacement of the 
wonderful  porkchop  plot  handbooks  generated by Andrey Sergeyevsky  (Ref. 12 provides  an 
example)  that we  have  all  come to depend  on  for conic-based  mission  design. As missions using 
the delicate  dynamics of the  Lagrange points become  more  wide spread, perhaps we  should 
consider  developing  electronic  handbooks to these chaotic  regions of the  Solar  System. 

To a  great  extent,  our  methodology  depended  on  the  fact  that  for  the  planar  3-body  problem,  the 
orbit space around  the  Lagrange points are completely  classified by the  Conley  school. For the 
three  dimensional 3-body problem, this is much  more  complex. Simo’s  school in Barcelona  has 
made  tremendous  strides in classifying  the  orbits for this problem. But,  the  complete  picture is still 
not  known.  The  solution of this classification  problem  would  have  great  impact  on astrodynamics 
as well as planetary  science  and  astronomy.  Perhaps NASA and NSF could jointly support  the 
development of this work in anticipation  that  somewhere in the next 30 years, the  classification of 
orbits in the  three-dimensional  3-body  problem  would  provide  another  solution  to  an  important 
space mission  problem. Perhaps, it may  provide a solution  for  an  impending  Near  Earth  Object in 
collision course with the Earth  following the  dynamical  channels of the  invariant  manifolds.  After 
all, this is how  Shoemaker-Levy9  met its spectacular  demise. 
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Figure  1. The 3 Body  Problem in Rotating  Frame. (Sun-Jupiter Case) The manifolds of the Ll(green) 
and L2 (black) are shown.  The stable manifold  curve  is dashed, the unstable manifold  is solid. 

x (nondimensional  units,  rotating  frame) 
b. 

Figure 2a. The Hill's Region Connecting the Interior (S), the  Planet (J), and the Exterior (X) Regions. 
2b.  Expanded  view of the L2 Region  with 4 Major Classes of Orbits: 

Black - Lyapunov  Orbit  (Unique  for  Each  Energy  Level) 
Red - Transit Orbits (Must  Pass Thru Lyapunov Orbit) 
Green - Spiral Orbits (The Manifolds,  Form Tubes), 
Blue - Non-Transit Orbits. 
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Figure 3.  The Stable (Green) and  Unstable (Ked) Manifolds of a Lyapunov Orbit. 

Figure 4. The  Sun-Earth  Unstable  Manifold (Kcd) (a) and Its Poincare  Section (b). 
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Figure 5. Using the Poincare Section to Find the Transfer Trajectory. 
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Figure 8. Ballistic  Capture  by  the  Moon  from  a 200 km Earth  Parking  Orbit. 
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Figure 8.c Trajectory in Earth-Moon 
Rotating  Frame. 
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